zxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			
Radioactivity	Nuclear decay of certain elements with the emission of radiations like alpha, beta,		
	and gamma rays is called radioactivity.		
	1) Natural radioactivity: Spontaneous emission of radiation from certain alaments on their own Fr : Uranium Padium		
	elements on their own. Ex : Uranium, Radium		
	radioactive by artificial or induced methods Fr · Bervllium Boron		
Inits of Radioactivity			
Curie Ouantity of a radioactive substance, which undergoes 3.7×10^{10} disintegrations in one second			
Rutherford (Rd)	The quantity of a radioactive substance which produces 10^6 disintegrations in one second		
Becauerel (Ba)	SI unit of Padioactivity. The quantity of one digintegration per second.		
	SI unit of Radioactivity. The quantity of one disintegration per second.		
Roentgen (R)	I ne quantity of radioactive substance, which produces a charge of 2.58×10^{-7} coulomb in 1 kg of air under standard conditions of prossure, topportuge and humidity		
Alpha Pata and Commo rave			
Alpha rave (a)	Alpha, Beta and Gamma rays		
$\frac{1}{2}$ Rote rays (<i>U</i>)	They are algorithms ($_2$ fier) consisting of two protons and two neutrons.		
Deta rays (p)	They are electrons $(-1e^{\circ})$, basic elementary particle in all atoms.		
Gamma rays (γ)) Electromagnetic waves consisting of photons.		
Dediacetive	1) When a radioactive element emits an alpha particle, a daughter nucleus is formed		
Radioactive	whose mass number is less by 4 units and the atomic number is less by 2 units, than the mass number and atomic number of the parent nucleus		
alsplacement	ine mass number and atomic number of the parent nucleus.		
and Egian's law	11) When a radioactive element emits a beta particle, a daughter nucleus is formed whose mass number is the same and the atomic number is more by 1 unit, than the atomic number of the parent nucleus		
allu fajali s law			
= -225 - Mass Number (A)			
225	— Mass Number (A)		
92 U ²³⁵	— Mass Number (A) — Atomic Number (Z)		
92 U²³⁵ Mass number = N	Mass Number (A) — Atomic Number (Z) No. of protons + No. of neutrons Beta decay : $_{Z}Y^{A} \rightarrow _{Z-2}Y^{A-4} + _{2}He^{4}$		
92 U²³⁵ Mass number = N Atomic number	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons		
92 U²³⁵ Mass number = N Atomic number	Mass Number (A) — Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission		
92 U^{235} Mass number = N Atomic number	Mass Number (A) — Atomic Number (Z) Alpha decay : $_{Z}Y^{A} \rightarrow _{Z-2}Y^{A-4} + _{2}He^{4}$ Beta decay : $_{Z}Y^{A} \rightarrow _{Z+1}Y^{A} + _{-1}e^{0}$ Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller		
92 U^{235} Mass number = N Atomic number	Mass Number (A) — Atomic Number (Z) <i>Io. of protons</i> + <i>No. of neutrons</i> = <i>No. of protons</i> Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons.		
92 U^{235} Mass number = N Atomic number Nuclear fission reaction	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q (energy)$		
92 U^{235} Mass number = N Atomic number Nuclear fission reaction Fissionable	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: 92U^{235} + 0n^1 \rightarrow 56Ba^{141} + 36Kr^{92} + 30n^1 + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: Uranium-238, Thorium-232, Plutonium-240.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons = No. of protons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material	Mass Number (A) Atomic Number (Z) No. of protons + No. of neutrons Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <u>Types:</u>		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction	Mass Number (A) — Atomic Number (Z) <i>Io. of protons</i> + <i>No. of neutrons</i> = <i>No. of protons</i> Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: 92U^{235} + 0n^1 \rightarrow 56Ba^{141} + 36Kr^{92} + 3 0n^1 + Q (energy)$ It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: 92U ²³⁵ , Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <u>Types:</u> (<i>i</i>) controlled chain reaction : The number of released neutron is maintained to be		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction	Mass Number (A) — Atomic Number (Z) Alpha decay : $_{Z}Y^{A} \rightarrow _{Z-2}Y^{A-4} + _{2}He^{4}$ Beta decay : $_{Z}Y^{A} \rightarrow _{Z+1}Y^{A} + _{-1}e^{0}$ Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: :Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. $Types:$ (i) controlled chain reaction : The number of released neutron is maintained to be one to sustain the chain reaction in a controlled manner.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction	Mass Number (A) — Atomic Number (Z) <i>Io. of protons</i> + <i>No. of neutrons</i> = <i>No. of protons</i> Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: {}_{92}U^{235} + {}_{0}n^{1} \rightarrow {}_{56}Ba^{141} + {}_{36}Kr^{92} + 3 {}_{0}n^{1} + Q (energy)$ It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: :Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <u>Types:</u> (<i>i</i>) controlled chain reaction : The number of neutrons multiply indefinitely which can be converted into reaction in a controlled manner. (<i>ii</i>)uncontrolled chain reaction : The number of neutrons multiply indefinitely		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction	Mass Number (A) Atomic Number (Z) <i>Alpha decay</i> : $_{Z}Y^{A} \rightarrow _{Z-2}Y^{A-4} + _{2}He^{4}$ Beta decay : $_{Z}Y^{A} \rightarrow _{Z-2}Y^{A-4} + _{2}He^{4}$ Beta decay : $_{Z}Y^{A} \rightarrow _{Z+1}Y^{A} + _{-1}e^{0}$ It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex::Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <u>Types:</u> (<i>i</i>) controlled chain reaction : The number of neutrons multiply indefinitely causing more fusion to occur and releases huge energy. It is the minimum mean of a facily metericle management of the chain reaction in the chain reaction		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction Critical mass	Mass Number (A) Atomic Number (Z) <i>Alpha decay</i> : $zY^A \rightarrow z_2Y^{A-4} + _2He^4$ Beta decay : $zY^A \rightarrow z_{+1}Y^A + _1e^0$ <i>Nuclear fission</i> It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _0n^1 \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3 _0n^1 + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex:$ Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex::Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <i>Types</i> : (<i>i</i>) controlled chain reaction : The number of neutrons multiply indefinitely causing more fusion to occur and releases huge energy. It is the minimum mass of a fissile material necessary to sustain the chain reaction.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction Critical mass (m _c)	Mass Number (A) Atomic Number (Z) <i>No. of protons</i> + <i>No. of neutrons</i> <i>Nuclear fission</i> It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. <i>Ex:</i> $_{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3_{0}n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. <i>Ex:</i> Uranium-235, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. <i>Ex:</i> $_{1}Uranium-238$, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <i>Types:</i> (<i>i) controlled chain reaction :</i> The number of neutrons multiply indefinitely causing more fusion to occur and releases huge energy. It is the minimum mass of a fissile material necessary to sustain the chain reaction. <i>* Sub critical :</i> If the mass of the fissile material is less than the critical mass. <i>* Suner critical :</i> If the mass of the fissile material is more than the critical mass.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction Critical mass (m _c)	Mass Number (A) → Atomic Number (Z) <i>No. of protons</i> + <i>No. of neutrons</i> = <i>No. of protons</i> Nuclear fission It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: 92U^{235} + 0n^{1} \rightarrow 56Ba^{141} + 36Kr^{92} + 3 0n^{1} + Q$ (energy) It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex: Uranium-235$, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <u>Types:</u> (<i>i) controlled chain reaction</i> : The number of neutrons multiply indefinitely causing more fusion to occur and releases huge energy. It is the minimum mass of a fissile material necessary to sustain the chain reaction. * Sub critical : If the mass of the fissile material is less than the critical mass. * Super critical : If the mass of the fissile material is more than the critical mass.		
92 Mass number = N Atomic number Nuclear fission reaction Fissionable material Fertile material Chain reaction Critical mass (m _c) Atom bomb	Mass Number (A) → Atomic Number (Z) <i>No. of protons</i> + <i>No. of neutrons</i> = <i>No. of protons</i> It is the process of breaking (splitting) up of a heavier nucleus into two smaller nuclei with the release of a large amount of energy and a few neutrons. $Ex: _{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{1/41} + _{36}Kr^{92} + 3 _{0}n^{1} + Q (energy)$ It is a radioactive element which undergoes fission in a sustained manner when it absorbs a neutron. $Ex: Uranium-235$, Plutonium-239, Plutonium-241. It is a radioactive element, which can be converted into fissionable material. Ex: Uranium-238, Thorium-232, Plutonium-240. A self- propagating process in which the number of neutrons goes on multiplying rapidly almost in a geometrical progression. <u>Types:</u> (<i>i</i>) controlled chain reaction : The number of neutrons multiply indefinitely causing more fusion to occur and releases huge energy. It is the minimum mass of a fissile material necessary to sustain the chain reaction. * Sub critical : If the mass of the fissile material is less than the critical mass. * Super critical : If the mass of the fissile material is more than the critical mass. * Super critical : If the mass of the fissile material is new than the critical mass. * Super critical : If the mass of the fissile material is new than the critical mass.		

, , , , , , , , , , , , , , , , , , ,				
Nuclear fusion reaction	It is the process in which two lighter nuclei combine to form a heavier nucleus. $Ex: {}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}He^{4} + Q$ (energy) It is possible only at extremely high temperature(10 ⁷ to 10 ⁹ K) and pressure.			
Stellar energy	Fusion reaction that takes place in the cores of the Sun and other stars results in an enormous amount of energy, which is called as stellar energy.			
Hydrogen bomk (fusion bomb)	rogen bomb on bomb) <i>Principle :</i> Nuclear fusion. It have an inbuilt atom bomb to create high temperature and pressure. When it explodes, fusion occurs and releases very large amount of energy in an uncontrolled manner.			
Symbols		Permitted range of radiation		
 Electron - e Proton - p⁺ Neutron - 0 Positron - + 	\mathbf{n}^{1} \mathbf{n}^{0} \mathbf{k}^{2}	100 mR per week (or) 20 milli Sievert per year 100 R \rightarrow leukemia (or) cancer $600 R \rightarrow$ death ear reactor		
A device in which nuclear fission reaction takes place in a self-sustained and controlled manner to				
produce electricity. <u>Types</u> : Breeder, fast breeder, pressurized water, pressurized heavy water, boiling				
Fuel A fissile material is used as the fuel. <i>Ex</i> : Uranium				
Moderator I	Prator It slows down high energy neutrons to slow neutrons. <i>Ex</i> : graphite & heavy water.			
Control rod I	It controls number of neutrons to maintain sustained chain reaction. <i>Ex</i> :Boron, Cadmium			
Coolant I	It removes heat produced in reactor core, to produce steam. <i>Ex</i> : Water, Air, Helium			
* <u>Uses</u> : Power generation, Produce radio isotopes, convert non fissionable material to				
fissionable material, research in nuclear physics.				